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ABSTRACT
Applications of large-scale knowledge graphs (KG) in the e-commerce
platforms can improve shopping experience for their customers.
While existing e-commerce KGs integrate a large volume of con-
cepts or product attributes, they fail to discover user intentions,
leaving the gap with how people think, behave, and interact with
surrounding world. In this work, we present COSMO, a scalable sys-
tem to mine user-centric commonsense knowledge from massive
behaviors and construct industry-scale knowledge graphs to em-
power diverse online services. In particular, we describe a pipeline
for collecting high-quality seed knowledge assertions that are dis-
tilled from large language models (LLMs) and further re�ned by
critic classi�ers trained over human-in-the-loop annotated data.
Since those generations may not always align with human prefer-
ences and contain noises, we then describe how we adopt instruc-
tion tuning to �netune an e�cient language model (COSMO-LM)
for faithful e-commerce commonsense knowledge generation at
scale. COSMO-LM e�ectively expands our knowledge graph to 18
major categories at Amazon, producing millions of high-quality
knowledge with only 30k annotated instructions. Finally COSMO
has been deployed in various Amazon search applications includ-
ing search relevance, session-based recommendation and search
navigation. Both o�ine and online A/B experiments demonstrate
our proposed system achieves signi�cant improvement. Further-
more, these experiments highlight the immense potential of com-
monsense knowledge extracted from instruction-�netuned large
language models.

CCS CONCEPTS
• Large Language Model, Knowledge Base;

1 INTRODUCTION
Understanding users’ intentions behind massive noisy behaviors
in online e-commerce platforms can be bene�cial for many down-
stream applications such as recommendations and product search,
etc [9, 16]. From the view of cognitive science, intentions are men-
tal states where humans can commit themselves to action, and
behaviors result from intentions [27]. For example, “to attend a
wedding party, we need to buy normal clothes” where the intention,
i.e., “attend a wedding party” is used to rationalize and explain
the user behavior i.e., “buy normal clothes”. In online shopping
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Figure 1: An example of mining implicit commonsense
knowledge from e-commerce user behaviors.

scenarios, e-commerce platforms can be more intelligent and user-
friendly to provide explainable recommendations and personalized
search experiences if they can precisely capture users’ intentions.
However, such intentions are not explicitly expressed by human
beings, which requires commonsense to understand and thus makes
it challenging for machines to extract in a scalable way.

Recently Yu et al. [45] propose to leverage a signi�cant amount of
knowledge implicitly stored in large language models like GPT3 [2]
or OPT [48] and generate user intentions by “asking” the reason
why users purchase or co-purchase products. One example is shown
in Figure 1 and e-commerce commonsense knowledge can be dis-
covered from user behaviors. Then human-in-the-loop annotations
are involved in collecting the judgments and providing human
feedback of automatic generations. Classi�ers trained on small-
scale annotated data are used to �lter low-quality knowledge. Such
distillation methods have been demonstrated e�ective in extract-
ing high-precision commonsense knowledge at lower annotation
cost [41, 45]. However, those methods generate knowledge candi-
dates from language models that are not well aligned with human
preferences. For example, we observe LLMs can generate generic in-
tentions that are neither faithful nor helpful, like “customers bought
them together because they like them” or “customers bought an
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Table 1: Comparison among existing commonsense knowledge graphs. ‘Rel’ represents relation types. Our new KG covers more
nodes and edges in more domains compared to existing e-commerce related KGs for intention understanding.

KG # Nodes # Edges # Rels Source Node Type E-commerce Intention User Behavior

ConceptNet [30] 8M 21M 36 Crowdsource1 concept 7 3 7
ATOMIC [25] 300K 870K 9 Crowdsource daily situation, event 7 3 7
AliCoCo [13, 14] 163K 813K 91 Extraction concept 3 7 search logs
AliCG [47] 5M 13.5M 1 Extraction concept, entity 7 7 search logs
FolkScope [45] 1.2M 12M 19 LLM Generation product, intention 2 domains 3 co-buy
COSMO (Ours) 6.3M 29M 15 LLM Generation product, query, intention 18 domains 3 co-buy&search-buy

Apple watch because it is a type of watch”. The desired genera-
tion should be typical to explain e-commerce behaviors. Making
language models better follow users’ instructions becomes crucial
to improve the helpfulness [1, 18], truthfulness [15] and trans-
parency [26] of LLMs.

On the other hand, such distillation method still su�ers from
major challenges caused by scalability issues of industry-level data.
First, [45] only explores co-purchasing intentions based on thou-
sands of co-purchase item pairs within two categories. In the real
production environment, millions of users produce complicated and
noisy behaviors every day, which also potentially entail enormous
and diverse intentions, such as search-buy behaviors. Thus, it is
crucial to select representative user behaviors for diverse inten-
tion generations. Second, [45] performs �ne-grained annotation by
separately labeling plausibility and typicality scores. As we aim to
fully support more scenarios in e-commerce, the annotation cost is
signi�cantly increasing with more categories and more user behav-
ior types. Third, when applying FolkScope to downstream tasks,
inference overhead might becomes the bottleneck since knowledge
generation for new user behaviors has to go through the pipeline
of LLM generation and classi�er scoring. LLMs like OPT-30b used
in FolkScope require huge computation cost and are not feasible
for online serving.

In this work, motivated by recent advancements in instruction-
following languagemodels [4, 24, 38, 40], we directly align language
models with human feedback via instruction tuning for e-commerce
commonsense knowledge extraction. Instruction-�netuned lan-
guage models over a large collection of datasets have demonstrated
remarkable zero-shot abilities [40]. How to collect high-quality and
diverse instruction data becomes important and challenging. Start-
ing from the annotation data across two domains of co-purchasing
behavior in [45], we scale up the data collection in terms of in-
tention knowledge resources (i.e., user behaviors), product domains,
and relation types shown in Figure 4. For user behaviors, we also
adopt industry-scale query-item interactions to generate ambiguous
and evolving intentions. Di�erent from straightforward intentions
behind co-purchasing behaviors [45], query intentions can help
reduce the semantic gaps between what a user truly needs and how
the product information is presented in the e-commerce system.
Generated intentions can help re�ne the broad query to speci�c
users’ needs and improve the query understanding abilities. In ad-
dition, we sample millions of two user behavior data among 18
popular domains (product categories) for knowledge candidate gen-
eration (§3.2). Before human labeling, we create a branch of heuris-
tic rules to �lter out low-quality knowledge and design careful

sampling strategies for annotated data selection (§3.3). Following
Yu et al. [45], we collect two evaluation metrics named plausibility
and typicality as human feedback (§3.3.2). To fuse language models
with human judgments, we select typical knowledge examples as
the demonstrations of desired model outputs for the commonsense
generation task while annotated labels as the desired model outputs
for label prediction tasks such as typicality prediction etc. (§3.4).
The resulting LMs are capable of generating typical knowledge and
judging knowledge quality as well. Compared with vanilla LLMs,
our instruction-�netuned LM can signi�cantly reduce inference
time and support extensive applications at scale. We successfully
deploy COSMO in various Amazon search applications and achieve
signi�cant o�ine performance improvement and online revenue
increases.

The contributions of our work can be summarized as follows.
• We are the �rst industry-scale knowledge system that adopts
large language models to construct high-quality knowledge
graphs and serve online applications.

• We adopt instruction tuning for e�ective e-commerce com-
monsense knowledge generation to better align with human
preferences.

• We scale up e-commerce intention knowledge to millions
of user behaviors and achieve high-quality instruction data
generation with fewer annotation e�orts.

• We apply generated intention knowledge to three real-world
e-commerce tasks, and promising experimental results show
great potential for more e-commerce scenarios.

2 RELATEDWORK
E-commerce Commonsense Knowledge. Existing e-commerce
knowledge graphs [5, 8, 13, 14, 46, 47] are mainly based on factual
knowledge concerning product attributes such as isA or authorOf
relations, and are not well connected with commonsense knowl-
edge about user intentions like “apple product fans” or “attend wed-
dings” etc. There is still a gap between collecting factual knowledge
about products and modeling users’ purchasing intention, which
we list the detailed comparison in Table 1. In contrast, Yu et al. [45]
proposed a framework named FolkScope to distill intention knowl-
edge from massive user behaviors by prompting large language
models. Instead of directly authoring knowledge assertions, human
beings only label a small number of automatic generations as high-
level supervision. Then classi�ers trained on labeled data are used
to �lter out low-quality generations. Although FolkScope achieves
high-precision extraction with low annotation cost, it covers lim-
ited domains and ignores abundant types of user interaction data
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Figure 2: Overall framework of generating high-quality in-
struction data from massive user behaviors and large lan-
guage models.

that entail complex intention knowledge in e-commerce scenarios.
To improve the generalization of e-commerce commonsense ex-
traction, we extend FolkScope, including scaling up to 18 popular
domains and introducing millions of search query behavior data.
Scaling up also presents challenges in terms of inference e�ciency
when distilling knowledge from LLMs. We solve them by e�ective
�netuning.
Instruction-followed Language Models. Language models pre-
trained on web-scale corpus often generate unfaithful, biased, or
unhelpful contexts. This is because the training objective of most
vanilla LMs, i.e., predicting the next token, is not aligned with
human preferences. Recently a series of works demonstrate that
�netuning a language model with natural language instructions can
teach LMs to have desired model behaviors [18, 40]. Instruction-
�netuned LMs have substantially improved their zero-shot and
few-shot performance on unseen tasks [4, 24, 38]. The quality and
diversity of instruction data have large impacts on the instruction-
following abilities of LMs. As collecting human-written instructions
is time-consuming and costly,Wang et al. [37] proposed self-instruct
to iteratively generate instructions and their outputs from GPT3 [2]
based on a small seed set of tasks. Followupworks [3, 19, 32] directly
use machine-generated instruction-following data from ChatGPT
or GPT4 for LLM �netuning. However, they focus more on general-
purpose language models and instruction-�netuned LMs on speci�c
domains such as e-commerce remain unexplored. Our work aims
at e�cient e-commerce instruction data collection and �netuning
LLMs to generate helpful and typical commonsense knowledge.
None of the above KGs are related to products or purchasing inten-
tion. We are the �rst to propose a e�ective KG construction pipeline
from LLMs and massive user intentional behaviors. Our pipeline
can be e�cient for online serving of industry-scale applications.

3 PROPOSED FRAMEWORK
3.1 Preliminary
In this section, we present the formal de�nition for terms in Figure 2
and the overview of o�ine COSMO knowledge generation pipeline.
User Behaviors.Millions of users interact with online e-commerce
platforms every day and producemassive behavior logs. E-commerce
systems mine the intentions behind those behaviors to provide a

better online shopping experience. We choose two typical user be-
haviors with strong potential intentions, i.e., search-buy and co-buy.
Formally, we de�ne the search-buy behavior as the query-product
pair (@, ?) that customers click the query @ and �nally purchase the
product ? within short sessions. Similarly, we use the co-purchased
product pair (?1, ?2) to represent the co-buy behavior. Each product
? can be categorized into one major domain 3 2 D (all domains
are shown in Table 3 and Figure 4).
Commonsense Knowledge. Following [45], we leverage relation-
aware prompts for LLMs to explain the user behavior ⌘ as knowl-
edge candidates, which we represent the knowledge as the triple
(⌘, A , C) where A and C represent relation and tail respectively. For
example, “customers bought camera case and screen protector glass
together because they are capable of providing protection for cam-
era”, “provide protection for camera” is the tail under the relation
capableOf.

Di�erent from previous work [45] aligning commonsense re-
lations from ConceptNet [30] for thousands of data, we can not
simply adopt for millions of user behavior pairs due to computation
constraints. Hence we propose data-driven relation discovery from
large-scale generations to satisfy e-commerce scenarios. The basic
idea is to start from four seed relations (i.e., usedFor, capableOf,
isA, cause) that tend to generate diverse/high-quality knowledge
according to the previous work [45] and mine the frequent predi-
cate patterns to manually summarize the relations. The most com-
mon pattern is “the product is capable of being used [Prep]”, where
[Prep]means prepositions. Generationswith di�erent prepositions
represent di�erent tail types, which can be further canonicalized.
By doing so, we can also make generated knowledge structured. We
summarize our mined knowledge relation types and corresponding
tail types as well as examples in Table 2. Either relation type or
tail type is more e-commerce speci�c and strongly related to daily
scenarios, which might require commonsense.
Instruction Data.We denote {�C } as a set of instructions, which
each de�nes a task C in natural language. One example in Fig 2
can be “generate explanations for the search-buy behavior in the
domain 3 using the capableOf relation”. Each task includes ;C input-
output pair instances. For the commonsense generation task, the
input can be a user behavior pair (?1, ?2) or (@, ?), and the output is
the typical knowledge tail C . Note the quality of knowledge (⌘, A , C)
can be measured by plausibility and typicality scores labeled by
human annotators [20, 45]. For the sake of usability and helpfulness,
we select knowledge with high-typicality scores as desired model
outputs. To further improve the e-commerce aware abilities of
instruction-�netuned models, we also add several auxiliary tasks
and train a languagemodel for knowledge generalization and online
serving as well (more details in §3.4)

3.2 Knowledge Generation
In this section, we �rst describe how we e�cient sample represen-
tative user behaviors as inputs of LLMs. Then we introduce the
question-answering based prompts to harvest large-scale knowl-
edge candidates from general LLMs.

3.2.1 User Behavior Sampling. Millions of users interact with on-
line e-commerce platforms everyday and produce massive behavior
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Table 2: Mined e-commerce commonsense relations for the
COSMO KG.

.
Relation Type Tail Type Example

����_���_���� Function / Usage dry face
����_���_��� Event / Activity walk the dog
����_���_��� Audience daycare worker
�������_�� Function / Usage hold snacks
����_�� Function / Usage build a fence
����_�� Concept / Product Type smart watch
��_� Concept / Product Type normal suit
����_�� Time / Season / Event late winter
����_��_��� Location / Facility bedroom
����_��_���� Body Part sensitive skin
����_���� Complementary surface cover
����_�� Audience cat owner

�I��������_�� Interest herbal medicine
�I�_� Audience pregnant women
�W��� Activity play tennis

logs. E-commerce systems mine the intentions behind those behav-
iors to provide better online shopping experience.

In our work, we choose two typical user-behaviors with strong
potential intentions, i.e., search-buy and co-buy as described in
§ 3.1. Huge-volume behaviors contain noises or are non intentional
random ones. In order to generate diverse and high-quality knowl-
edge, we conduct �ne-grained sampling, which starts from product
sampling followed by behavior pair sampling. For the product sam-
pling, we cover most common popular categories (also known as
browse nodes2) at Amazon and select top-tier products that have
relatively larger behavior interactions. Besides category labels, we
also adopt product type labels for sampling that de�ne more than
a thousand classes and describe what the products essentially are,
such as umbrella, chair etc.

For the co-buy pair sampling, each co-buy edge should cover at
least one from the selected product set and we cross-check with
the product type of sampled pairs to remove random co-purchases
and avoid duplicated sampling from the abstract level. Also some
heuristic rules are applied such as the products co-purchased by
di�erent types of products are likely to be randomly selected. For
the search-buy pair sampling, we empirically set thresholds for both
purchase rate and click rate to sample queries as well as purchased
products. One crucial consideration is the speci�city of query, which
indicates whether the query is a broad or speci�c one. As our goal
is to make up the semantic gap between the search query and the
product, generating knowledge for the broad or ambiguous query
are of more values to narrow down clear needs. So we use one in-
house service from Amazon Search to compute the speci�city score
of the query and sample broad queries associated with purchased
products. For most search queries with high engagement, search en-
gines can understand their intentions well. We also sample queries
with lower engagement and less purchase rate to directly probe
knowledge from LLMs themselves. To take all the above strategies

2https://www.browsenodes.com/

into consideration, we �nally sample several millions of behavior
pairs. The statistics of sampled behavior pairs are shown in Table 3
and there exist 1.40 million product type pairs among 3.14 million
co-purchased product pairs, which also demonstrates the diversity
of our sampling.

3.2.2 QA-Prompted Generation. LLMs have been shown to encode
a signi�cant amount of knowledge in their parameters. Speci�c-
designed prompts can enable autoregressive LLMs to continue
generation on condition of verbalized prompts. For example, given
a purchase behavior “A customer bought an iPhone because it
has”, LLMs can generate the intention knowledge related to func-
tion or property of “iPhone”. In our work, we �nd that LLMs are
more skillful at answering contextualized questions given a well-
described scenarios or task instructions, which align with speci�c
user behaviors. So we verbalize the user behaviors by providing a
Question-Answering (QA) context. Take the following search-buy
prompt as example in Figure 3.

Task:  Please provide typical explanation for the following 

search-purchase behavior and complete the answer.

Search Query: {Query}

Product: {Product Title}

Question: what is the product capable of, which exactly 

match the intention of the search query? 

Answer:  the query means customers want the product that 

is capable of 

1.

Figure 3: Prompts used for generating knowledge candidates.

Adding the number character “1” at the end is a useful prompt
engineering trick to generate a list of knowledge candidates. we
�rst provide a task description like “The following search query
caused the following product purchases”, then follow the speci�c
query and product information. For general LLMs, we append one
question and partial answer so that LLMs can follow the given
instructions in convenience of parsing generation. In our work,
we use both OPT175b and OPT30b [48] hosted on 16 A100 GPUs to
conduct generation inference3. Some generation examples for each
domain are shown in Table 9 of the Appendix.

3.3 Knowledge Re�nement
Though well-designed knowledge generation and relation-speci�c
parsing, vanilla LLMs can generate generic or unfaithful knowledge.
To encourage diversity and helpfulness, we use the following steps
to �lter the generations.

3We do not choose to query powerful ChatGPT or GPT4 APIs due to private data
access and privacy constraints.

https://www.browsenodes.com/
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Table 3: Statistics of COSMO knowledge graph including the sampled user behavior pairs, annotated knowledge candidates, and
remaining edges after knowledge re�nement.

Co-buy Search-buy

Category # Behavior Pairs # Annotations # Edges # Behavior Pairs # Annotations # Edges

Clothing, Shoes & Jewelry 233,989 1303 2,147,605 176,018 597 887,130
Sports & Outdoors 251,713 1302 2,140,491 126,130 970 556,233
Home & Kitchen 426,070 1991 3,380,502 225,377 3798 1,054,764
Patio, Lawn & Garden 117,871 542 908,158 56,754 263 280,932
Tools & Home Improvement 258,480 1184 1,988,346 122,613 585 629,004
Musical Instruments 24,206 84 174,238 9,385 24 33,786
Industrial & Scienti�c 385,990 1820 3,002,352 177,400 1317 814,266
Automotive 166,234 782 1,330,580 55,201 456 258,340
Electronics 178,938 777 1,316,937 119,764 768 549,716
Baby Products 111,204 430 721,727 30,156 38 135,702
Arts, Crafts & Sewing 13,1131 616 1,095,531 62,135 232 274,015
Health & Household 233,945 1198 1,906,447 215,349 67 930,307
Toys & Games 148,455 646 1,165,692 73,512 536 291,107
Video Games 16,436 60 106,449 10,306 30 29,681
Grocery & Gourmet Food 99,660 504 775,016 116,765 2123 577,986
O�ce Products 136,519 650 1,086,735 79,470 2063 364,767
Pet Supplies 43,541 206 302,839 51,807 1122 219,143
Others 182,738 905 1,351,257 160,189 11 648,765

Total 3,147,120 15,000 24,900,902 1,868,331 15,000 5,093,795

3.3.1 Coarse-grained Filtering. In this step, we aim at �ltering
incomplete generations with the help of linguistic analysis and
general knowledge that apply for any behavior.
Rule-based Filtering.We �rst use the sentence segmentation tool
from nltk to extract the �rst sentence from generation. Then we
calculate the perplexity score based on the GPT-2 language model
and tune the threshold to remove incomplete sentences. We also
directly �lter the generations that are exactly the same as query,
product type or product title (or edit distance less than the threshold).
For the general knowledge like “used for the same reason”, or “used
with clothes”, we identity those cases by combining frequency and
entropy since they co-occur with many products or queries rather
than speci�c ones.
Similarity Filtering. To handle the semantic-similar cases that can
not easily be handled in the last step, we use the in-house language
model, which was pretrained on the e-commerce corpus including
query, product information etc, to obtain the embeddings for gener-
ate knowledge tails, query and product themselves. The similarity
between the knowledge embedding and the context embedding (the
original query or product embedding) is computed by their cosine
similarity:

3 (:, 2) = cos(E(:), E(2)) . (1)
We �nd that �ltered generations are essentially paraphrases of
original user behavior contexts with syntactic transformations. By
two coarse-grained �ltering steps, we are able to remove quite
a large amount of noise and keep typical knowledge as much as
possible.

3.3.2 Human-in-the-loop Annotation. The annotation step aims at
providing human feedback for knowledge candidates and collecting

diverse instruction data. The biggest challenge is still the balance
between huge-volume knowledge candidates and cost. We expect
models trained over annotated data can generalize well among
multiple categories shown in Table 3. Uniform sampling might hurt
the prediction performance on long-tail knowledge. Instead we
combine the log of knowledge frequency and popularity of product
or query for re-weighting:

F (@,? ),C =
log(5 (C))

pop(q) ⇥ pop(p) , (2)

where 5 (C) is the frequency of generated knowledge and the func-
tion of popularity is de�ned by the degree of query in the query-
product interaction graph or the degree of product in the product
co-buy graph. The more popular the product is, the more likely the
generated knowledge is common. For both two user behaviors, we
sample 15 thousand knowledge candidates for annotation and the
distribution is also shown in Table 3.

Due to data privacy issues, we employ professional data anno-
tation vendor company to conduct the high-quality annotation
followed by strict and careful internal auditing process. Previous
work [45] measures the quality of generated knowledge by two-step
annotation i.e., plausibility (how the knowledge is plausible) and
typicality (how representative the knowledge is regarding the typi-
cal shopping behavior). One example is that more typical intention
why customers bought apple watches is that they are intelligent
watches instead of being used for telling the time. To reduce the
cognitive burden of annotators and the potential disagreement rate
of commonsense, we decompose the two measurements’ judgments
into �ve clear questions: 1). Is the explanation a complete sentence?
2). Is the explanation relevant? 3). Is the explanation informative? 4).
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Toys & Games
Video Games
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Office Products 
Pet Supplies 
Others
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Used_For_Func
Used_For_Event
Used_For_Audience
Capable_Of
Used_As
Is_A
Used_On
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Used_In_Body …
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Commonsense Generation
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Typicality Prediction

Search Relevance Prediction
Co-purchase Prediction

User Behaviors

item-item co-purchase query-item search-buy

E-commerce Commonsense Extraction 

18 Domains

15 Relations

5 Tasks

Figure 4: Illustration of �netuning COSMO-LM to generate
e-commonsense knowledge from two typical user behaviors.
We scale up product domains, relation types and tasks.

Is the explanation plausible? 5). Is the explanation typical?, where
each question is labeled as yes/no/not sure by two di�erent an-
notators and �nally checked by a third person if disagreement is
found4. Pilot study over 2000 example annotation shows that the
pipeline signi�cantly reduced disagreement rate. For the quality
of annotated data, we randomly sample 5% annotation for inter-
nal auditing and the accuracy can reach more than 90%. We then
build a classi�cation model using this data to score all the knowl-
edge candidates after coarse-grained �ltering. We �ne-tuned both
DeBERTa-large [6] and our in-house language model to populate
the human judgements to the whole knowledge candidates whose
plausibility score is above 0.5 are left. After the process of knowl-
edge re�nement, we obtain high-quality e-commerce knowledge
with relatively low cost and the statistics are also shown in Table 3.

3.4 Instruction-tuned COSMO Language Model
After collecting human judgments on 30k diverse knowledge sam-
ples, we can create large-scale instruction data based on annotated
data. The annotation results are shown in Table 4. We can observe
that more than one-third search-buy generations are typical and can
directly serve as instruction data. But the typical ratio for co-buy
is notably low since LLMs mostly generate intention knowledge
for one of the co-purchased products rather than considering their
common reasons, making generations implausible. We expect �ne-
tuned language models to have desired model behaviors. Apart
from generating typical knowledge, we enable LMs to have abilities

4The instructions of each question are detailed in Appendix B and the screenshot of
annotation interfaces is shown in Figure 11.

Table 4: The plausibility and typicality ratios of annotated
data for two user behaviors.

Plausibility Typicality

S��������� 44.3% 35.0%
C����� 14.5% 9.0%

Figure 5: Illustration of COSMO-LM deployment, featuring
the Asynchronous Cache Store and Feature Store as central
components. It depicts the e�cient processing of user queries
and dynamic daily updates, crucial for meeting Amazon’s
search latency requirements.

of plausibility and typicality prediction, in which all the annotations
are converted to instruction data for the tasks.

Considering non-negligible noises of user-behavior data, our
�ne-grained annotations in §3.3.2 have identi�ed irrelevance query-
product pairs or random cobuy pairs. We also consider adding co-
purchase prediction and search-relevance prediction into the �ne-
tuned tasks. So far, we collect instruction data covering 18 product
domains, 15 relation types, and 5 di�erent types of tasks. To make
the model robust to di�erent formats, we design di�erent templates
to verbalize the instructions and input-output pairs. For example,
we add pre�xes of “search query”, “user input” or “user searched:”
etc. We �netune the LLaMA 7b and 13bmodels [33, 34], the widely-
used open foundation models with our collected instruction data.

3.5 Online Deployment
The deployment centers around an e�cient feature store and asyn-
chronous cache store, ensuring streamlined processing and cost-
e�ective management of customer queries and model responses.

3.5.1 Deployment Strategy. Deployment Management: Sage-
Maker [11]5 is used to refresh COSMO-LM model, facilitating dy-
namic ingestion of customer behavior session logs and e�cient
model updates through robust automation. Feature Store Inte-
gration: This store is essential for transferring model responses to
structured features, making them actionable for downstream appli-
cations. It handles features like product key-value pairs, semantic
subcategory representations, and strong intent detection. Asyn-
chronous Cache Store: Employed to manage frequent searches

5Amazon machine learning model services https://aws.amazon.com/pm/sagemaker/

https://aws.amazon.com/pm/sagemaker/
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and adapt to daily tra�c patterns, this store e�ciently captures
user queries through a two-layered caching strategy, combining
pre-loaded yearly frequent searches and batch-processed daily re-
quests.

3.5.2 Operational Flow. We list key processes showed in Figure 5:

• Model Deployment: COSMO-LM is deployed on SageMaker
for processing user behavior session logs and dynamic model
updates.

• Request Handling: Initial query checks against the Asynchro-
nous Cache Store quickly retrieve responses for frequent queries
or forward others for batch processing.

• Batch Processing and Cache Update: The Feature Store for-
mats languagemodel responses into structured insights, updating
the cache for future queries.

• Communication with DownstreamApplications: Structured
data from the cache enhances various downstream applications,
providing enriched features for improved user interaction.

• Feedback Loop: Continuous model re�nement is achieved by
feeding back user interactions into COSMO-LM, ensuring up-to-
date responsiveness to evolving user behaviors.

3.5.3 Impact and Limitations. The deployment of COSMO-LM,
utilizing the Asynchronous Cache Store and Feature Store strategy,
e�ectively meets Amazon’s restricted search latency requirements
while maintaining storage costs comparable to real-time serving
for the majority of tra�c. This approach signi�cantly enhances
our ability to manage online requests swiftly and economically.
To acknowledge, even though we refresh our model daily, we are
limited in processing real-time information, such as �ash sales.
These time-sensitive events, often �uctuating within a short span,
pose a challenge to our current system’s ability to rapidly assimilate
and re�ect such immediate changes. This limitation underscores
the need for further development to enhance our system’s agility
in responding to the fast-paced dynamics of e-commerce activities.

4 EVALUATIONS AND APPLICATIONS
In this section, we adopt instruction-tuned COSMO language mod-
els to generate e-commerce commonsense knowledge for down-
stream applications, i.e., search relevance, session-based recom-
mendation and search navigation. We conduct extensive o�ine and
online evaluation experiments to demonstrate the e�ectiveness of
our proposed framework and deployed system.

4.1 Search Relevance
Determining relevance scores between the search query and docu-
ments lies the core of information retrieval, which serves as cru-
cial components for search engines [29]. A major challenge in
e-commerce product search is the semantic gap between queries
and product catalogs [10, 17]. Some of them require abundant com-
monsense knowledge to bridge them together. For example, the
query “winter clothes” often implicates the users want clothes to
keep warm. Hence we augment search relevance prediction with
COSMO knowledge explaining search-buy behaviors.

Query Encoder Product Encoder Encoder

!! !!

(a) Bi-encoder (b) Cross-encoder

!" ⋯ !! !!!" ⋯"! """" ⋯ "! """" ⋯ #! ###" ⋯

⋯ ⋯ ⋯
Aggregator Aggregator Aggregator

Softmax classifier Softmax classifier

Figure 6: Illustration of Search Relevance Models.

Table 5: Statistics of ESCI evaluation datasets of di�erent
locales (markets).

KDD Cup �� �� �� ��

# Training Pairs 1,393,063 1,148,528 220,114 462,560 1,480,116
# Test Pairs 425,762 383,695 72,500 155,138 495,078
# Exact Pairs 1,247,558 1,104,417 245,796 455,947 1,352,128
# Unique Queries 97,345 57,971 9,537 32,162 42,884
# Unique Products 1,215,851 803,363 136,398 427,572 456,407

Formally, given a query & = {@1,@2, ...,@=} and a list of re-
trieved products ⇡ where % 2 ⇡ , either ranking or classi�ca-
tion tasks require the relevance score of each query-product pair
{&, %} [21]. In real e-commerce systems, each product is accom-
panied by side information, e.g., product title, descriptions and
attributes. To be simple, we concatenate them into one single text
span % = {?1, ?2, ..., ?<}. As aforementioned that there remains
semantic gaps between user intentions in the query & and product
information % , we leverage COSMO�LM to generate commonsense
knowledge ⌧ = {61,62, ...,6; } behind the query-product pairs and
explicitly enhance their connections.

4.1.1 Experiment Setup. We adopt open-released Amazon shop-
ping query datasets6 from KDD Cup 2022. Following the settings of
Task 2, the problem of measuring search relevance is formulated as
a four-class classi�cation problem: to distinguish a given product
as an Exact, Substitute, Complement, or Irrelevant match for a user’s
query. In order to verify the generalization of our approach, we also
collect similar datasets from our online system to accommodate
product varieties and languages habits across di�erent markets,
i.e., United States (��), Canada (��), United Kingdom (��), and In-
dia (��). Dataset statistics are reported in Table 5. Considering the
class imbalance distribution, we report Macro F1 and Micro F1 but
focus more on the former one.

4.1.2 Baselines. We consider two representative architectures as
baselines shown in Figure 6:
• Bi-encoder [22, 28], also known as two-tower models, takes
the concatenation of the query representation and product title
representation as the input of a multi-layer perceptron to predict
the relevance label.

• Cross-encoder [42] feeds all relevant features (e.g., query, prod-
uct title, description, etc) into the uni�ed encoder and leverage
joint representations to make predictions.

6https://github.com/amazon-science/esci-data

https://github.com/amazon-science/esci-data
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Table 6: Experimental Result of Public ESCI English subset.

.

Method Fixed Encoder Trainable Encoder
Macro F1 Micro F1 Macro F1 Micro F1

Bi-encoder 25.52 65.49 47.96 70.23
Cross-encoder [42] 28.44 66.84 57.49 74.23
Cross-encoder w/ Intent 45.52 86.40 73.48 90.78

� 60.06% 29.26% 27.81% 22.30%

Cross-encoder models generally outperform bi-encoder counter-
parts due to extra attention interactions. Hence we augment cross-
encoder models with our generated knowledge features, i.e., con-
catenate [&, %,⌧] as inputs. We follow [42] to use strong deberta-v3-
large7 as the base model and consider both �xed and tuned settings
for encoders.

4.1.3 Public Dataset Results. Table 6 shows that knowledge gen-
erated from COSMO-LM, which captures implicit e-commerce
commonsense, can signi�cantly boost the performance of query-
product semantic relevance. When the encoder is �xed, there is
no huge di�erence between two architectures. But augmented in-
tention knowledge boosts the performance around 60% on Marco
F1 and 30% on Micro F1. We can still observe the performance
enhancement around 25% when the parameters of encoders are
updated. Finally, generated knowledge helps Cross-encoder achieve
73.48% Macro F1 and 90.78% Micro F1, which even surpasses the
top-1 ensemble model of KDD Cup leaderboard [42].

4.1.4 Private Dataset Results. To further validate the e�ectiveness
of our approach on multi-locale scenarios, we conduct similar ex-
periments on a large-scale private dataset. The product distribution
and query language habits might have signi�cant di�erences across
di�erent locales (markets). We expect our generated knowledge
can provide high-quality features or signals for search relevance
systems, and generalize to more complex scenarios. From Figure 7a
and Figure 7b, we can conclude the following observations: 1).
Our COSMO-LM can always help strengthen cross-encoder perfor-
mance even with limited annotations, which is in line with results
of the public dataset in §4.1.3. 2). Intention-enhanced cross-encoder
models can signi�cantly outperform baseline methods for all locales
whenever the encoder is �xed or tuned. In the online deployment
environment, generated knowledge as well as other features stored
in the feature store are integrated to make �nal predictions shown
in Figure 5. In order to improve serving e�ciency, we pre-cache
features for frequent search queries.

4.2 Session-based Recommendation
Recommendation systems have become one of most crucial com-
ponents in the e-commerce platform for customers to choose from
massive and rapidly increasing products. Sessions associated with
multiple user-item interactions in a period of time can better cap-
ture user preferences and intents besides user pro�les [36]. Session-
based recommendations typically predict next click or purchased

7https://huggingface.co/microsoft/deberta-v3-large

(a) Macro F1

(b) Micro F1

Figure 7: Comparison results on private ESCI datasets of four
di�erent locales.

item from the product item set + = {E1, E2, ..., E<} given an anony-
mous behavior sequence ( = {EB1, EB2, ..., EB; } in the chronological
order where ; is the length of session ( . Sequential neural networks,
such as RNN [7], transformers [31], are employed to capture user
dynamic preferences within sessions. Further item sequences can
be organized as session graphs GB = (VB , EB ) that model com-
plex pair-wise interactions of adjacent items using graph neural
network. The relation of edge (E8 , E 9 ) can be de�ned by the inter-
action direction, i.e., in-edge or out-edge [39]. Both sequential or
graph-based methods only learn item embeddings for E8 but ignore
side information of products, like product titles, product attributes,
and interaction patterns. Among them, search queries associated
with clicked/purchased behaviors are helpful to better capture user
intentions and evolving preference changes. Hence we improve
session-based recommendation by auxiliary user search keyword
sequences  = {:B1,:B2, ...,:B; } and our generated knowledge for
each search-product pair (EB8 ,:B8 ).

4.2.1 Experimental Setup. We collect and �lter one-week session
data from our log system that falls into the categoires of clothing
and electronics. Each session is limited within 20 minutes, which
contains highly-frequent items in the same domain and ends with
successful purchases. For training/test splitting, sessions in the
�rst �ve days are used as training, while the sixth and the last

https://huggingface.co/microsoft/deberta-v3-large
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Table 7: Statistics of Session-based recommendation datasets
of two categories. “Avg. Sess. L.” stands for average session
length. “Avg. Q. L.” is the average query length. “Avg Uniq. Q.
L.” stands for average unique query length.

clothing electronics
Train Dev Test Train Dev Test

# Sessions 1.32M 0.24M 0.23M 3.13M 0.59M 0.58M
Avg. Sess. L. 8.79 8.78 8.70 12.27 12.17 12.22
Avg. Q. L. 8.32 8.29 8.22 11.68 11.61 11.61
Avg Uniq. Q. L. 1.36 1.37 1.36 2.47 2.48 2.48

day are employed as validation and test data. Dataset statistics are
detailed in Table 7. Sessions of the electronics domain have longer
unique query sequences than clothing. It indicates that users might
revise their original search keywords and modeling dynamics of
user query can help precisely predict user behaviors. We formulate
session-based recommendations as a ranking problem as previous
work [36] and employ the commonly-used metrics in our experi-
ments, i.e., Hits@10, NDCG@10, and MRR@10,

4.2.2 Baselines. We compare with competitive sequential models
and graph-based models as baselines:

• FPMC [23] formulates the representation of session via Markov-
chain based methods.

• GRU4Rec [7] leverages Gated Recurrent Unit (GRU) to simulate
the Markov Decision Process but has a better generalization.

• STAMP [12] applies attention on the last item and previous
histories to represent users’ short-term interests.

• CSRM [35] combines an inner memory encoder and external
memory to capture session correlations.

• SR-GNN [43] is the �rst to apply graph neural network (GNN) to
the SBR task, which transforms the session sequence into a direct
unweighted graph to learn item and transition representations.

• GC-SAN [44] extends SR-GNN by self-attention over the whole
graph after graph convolution to obtain the global representation.

• GCE-GNN [39] aggregates two levels of item embeddings from
session graphs and global graphs with soft attention.

4.2.3 COSMO-GNN. Preliminary experiments demonstrate that
GCE-GNN can achieve strong performance on various session-based
recommendation datasets and learn better item embeddings with
two-level GNNs. Therefore, we extend GCE-GNNwith search query
related knowledge generated from COSMO-LM, and jointly opti-
mize GNN for search intention-aware recommendation. We name
our propose approach as COSMO�GNN. Formally for the time step C
in the session ( , the user searches the query :BC and have interaction
with the item EBC . The item embedding obtained from GCE-GNN
is denoted as hBC . Then COSMO-LM is used to generate intention
knowledge explaining the behavior with query-product pair (EBC ,:BC ).
We leverage the same LM to vectorize generated knowledge and
obtain session knowledge embedding gBC . To align the knowledge
space with GNN feature space, a two-layer perceptron is used to
transform knowledge representation gBC to ĝBC . The �nal represen-
tation for each step is the concatenation of GNN item embedding

Table 8: Experimental Results of Session-based Recommen-
dations.

Method clothing electronics
Hits@10 NDCG@10 MRR@10 Hits@10 NDCG@10 MRR@10

FPMC 62.16 45.07 39.60 21.79 16.01 14.18
GRU4Rec 83.20 63.37 56.94 49.53 33.99 29.06
STAMP 81.34 61.32 54.86 56.96 38.74 32.92
CSRM 82.31 65.59 60.25 61.66 46.63 41.83
SRGNN 85.82 69.68 64.45 67.83 55.23 51.22
GC-SAN 84.43 68.96 63.93 66.88 55.87 52.34
GCE-GNN 86.67 69.35 63.79 70.13 55.17 50.37

COSMO-GNN 90.18 72.30 67.08 74.21 56.26 50.67
� 4.05% 3.76% 4.08% 5.82% 0.70% -3.19%

and knowledge embedding, i.e., [hBC , ĝBC ]. Following [39], the session
representation can be obtained via average polling over all steps’
representations.

4.2.4 Results. Experimental results are shown in Table 8. We can
observe: 1). Our proposed COSMO-GNN signi�cantly outperforms
all the competitive baselines on Hits@10 and NDCG@10 for two do-
mains, and compete almost all baselines with MRR@10. 2). COSMO-
GNN achieves slightlymore improvement (5.82% v.s. 4.05%Hits@10)
on the session data that has more complex and diverse search se-
quences. As shown in Table 7, more unique search queries are
involved in the session of electronics than clothing (2.47 v.s. 1.36).
The reason might be that user intentions for clothing are much
easier to describe, but it requires more background knowledge for
revisions to reach what users really need. More investigations like
how COSMO reduces query rewrites are left for future work.

4.3 Search Navigation
Besides aforementioned traditional e-commerce scenarios, COSMO
can also revolutionizes search navigation, moving away from tra-
ditional product-centric taxonomies towards a customer-focused
approach. This shift enhances the shopping experience, aligning
it more closely with customer intents and behaviors, and bridging
the gap between product classi�cation and customer language by
dynamically providing taxonomy with customer query concepts.
Speci�cally COSMO intention knowledge can be further organized
into hierarchies shown in Figure 8 that expand coarse-grained ones
(camping) to �ne-grained ones (winter camping), and intention con-
cepts are further linked to product concepts such as winter boots.

4.3.1 Multi-Turn Navigation. COSMO distinguishes itself with a
multi-layered and dynamic navigation system (Figure 9):

(1) Broad Conception Interpretation: It begins by tackling
broad queries using advanced analytics and customer behav-
ior insights, covering a wide range of user intents without
explicit domain knowledge.

(2) Product Type and SubtypeDiscovery: Subsequently, COSMO
assists users in identifying speci�c product types and sub-
types, adept at handling both direct and abstract product
queries.
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Figure 8: An illustration of hierarchical organization of
COSMO tail knowledge.

Figure 9: Search Navigation Experience using COSMO

(3) Attribute-Based Re�nement: The �nal layer aids in �ne-
tuning search results, allowing users to �lter based on spe-
ci�c attributes and aligning results with individual prefer-
ences.

Central to COSMO’s functionality is the Multi-Turn Navigation.
Here, COSMO excels in providing multiple rounds of search re�ne-
ments through continuous recommendations. For example, a search
for ’camping’ might lead to a selection like ’air mattress’, which
then re�nes to ’camping air mattress’. COSMO would then o�er
various types of camping air mattresses tailored to di�erent needs
such as lakeside camping, mountain camping, or 4-person camping.
This multi-turn navigation allows for deeper and more precise re-
�nements, mirroring a natural discovery process and signi�cantly
enhancing the user’s search experience.

4.3.2 Online Experiments. The integration of COSMO into our
online search navigation system has led to signi�cant business im-
provements, underscoring the power and potential of COSMO-LM
based applications. This conclusion is drawn from meticulously
conducted Amazon online A/B tests carried out over several months
in total, targeting approximately 10% of Amazon’s U.S. tra�c. These
well-structured tests revealed a notable 0.7% relative increase in

Figure 10: An example of generation from COSMO-LM

product sales within this segment, translating to hundreds of mil-
lion dollars in annual revenue surge. Additionally, an 8% increase in
navigation engagement rate was observed within the same tra�c
segment, highlighting improved customer interaction and satisfac-
tion. These outcomes are especially signi�cant considering they
were derived from the implementation of a single, relatively minor
feature on the search page with limited showroom visibility, as
illustrated in Figure 9. The success of this initial implementation
indicates a tremendous opportunity: by extending the adaptation of
COSMO-LM to encompass all tra�c for navigation, we anticipate
the potential to generate a revenue increase in the billions. More-
over, this promising outcome also underscores the vast potential of
leveraging the COSMO-LM across a variety of other features and
applications, opening new avenues for enhanced user experience
and business growth.

5 CONCLUSION AND DISCUSSION
In this paper, we propose �netuning language models on a col-
lection of e-commerce annotated data, phrased as instructions, to
generate high-quality commonsense knowledge that aligns with
human preferences. To gather large-scale and diverse instruction
data, we design an automatic instruction generation pipeline based
on massive user behaviors. Scaling up product domains, relation
types, and �netuned tasks achieves scalable knowledge extraction.
Furthermore, downstream applications, such as semantic relevance
and session-based recommendation, demonstrate the e�ectiveness
of knowledge generated from instruction-�netuned language mod-
els. Compared to directly distilling knowledge from large language
models, the instruction-�netuned models, with fewer parameters,
o�er signi�cant advantages in terms of model inference e�ciency.
Our work represents the �rst step in aligning language models
with domain-speci�c human preferences, and we hope that the
automatic instruction data pipeline can be applied to other �elds.
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A KNOWLEDGE GENERATION
We present generation examples for each category in Table 9.

Table 9: Examples of Generations for Di�erent Categories.

Category Example

Clothing, Shoes & Jewelry used for biking
Sports & Outdoors capable of providing arch support
Home & Kitchen used for peeling potatoes
Patio, Lawn & Garden capable of hanging out in the backyard
Tools & Home Improvement used for sharpening scissors
Musical Instruments used for wedding party
Industrial & Scienti�c capable of holding a lot of weight
Automotive capable of digging a hole.
Electronics used to prevent blisters
Baby Products capable of keeping the baby’s feet dry
Arts, Crafts & Sewing used for stamping on fabric
Health & Household capable of hydrating the skin
Toys & Games capable of �ying in the air
Video Games used to protect the headset
Grocery & Gourmet Food used to make potato chips
O�ce Products used for writing down important information
Pet Supplies used for walking the dog
Others capable of tracking calories burned

B KNOWLEDGE ANNOTATION
The instructions of data annotation is summarized into �ve as-
cpects:
• Completeness: the explanation must be a complete, meaningful
sentence.

• Relevance: the explanation should be relevant — i.e., very closely
connected in meaning — to the products it refers to.

• Informativeness: remember that each explanation describes the
shopping behavior of a customer, and in so doing, it should also
specify what the user may be looking for in terms of a product’s
functional requirements.

• Plausibility: the explanation should describe the user’s shopping
behavior in a way that is accurate, reasonable and appropriate in
the particular context determined by the query.

• Typicality: although wemay have equally valid inferences about
a customer’s shopping intention, those statements can be ranked
di�erently with regard to how representative they are of typical
user shopping behavior given what is known about the queried
product.


